
Neural Stochastic Differential Equations for Uncertainty-Aware Offline RL

Cevahir Koprulu¹, Franck Djeumou², Ufuk Topcu¹

¹The University of Texas at Austin, ²Rensselaer Polytechnic Institute

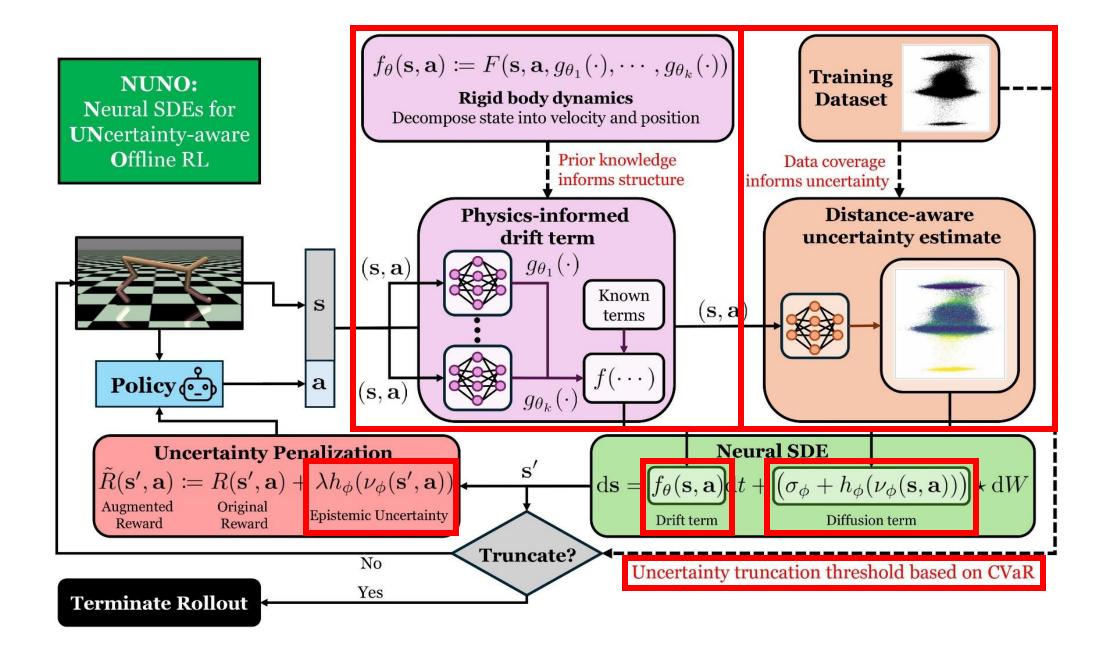
TLDR: Neural SDEs for offline model-based RL outperforms SOTA in continuous control benchmarks, particularly in lowquality data regimes.

Offline Model-based RL

Model Exploitation

A pitfall of offline MBRL:

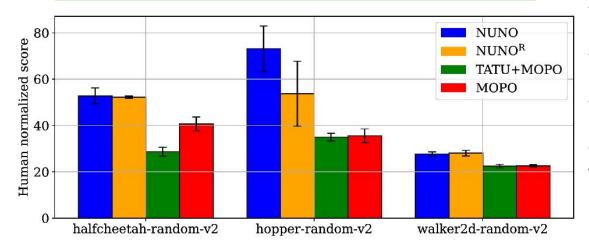
- Estimated return exceeds the true return $\nu_{\widehat{\mathcal{M}}}(\pi) \nu_{\mathcal{M}}(\pi) > 0$.
- Policy π learns to exploit the regions of state-action space with high model uncertainty as well as high estimated return.


Popular remedies:

- Penalize policy with respect to model uncertainty [1]
- Truncate generated rollouts with high model uncertainty [2]

^[1] Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S., ... & Ma, T. (2020). Mopo: Model-based offline policy optimization. Advances in Neural Information Processing Systems, 33, 14129-14142.

^[2] Zhang, J., Lyu, J., Ma, X., Yan, J., Yang, J., Wan, L., & Li, X. (2023). Uncertainty-driven trajectory truncation for data augmentation in offline reinforcement learning. In ECAI 2023 (pp. 3018-3025). IOS Press.

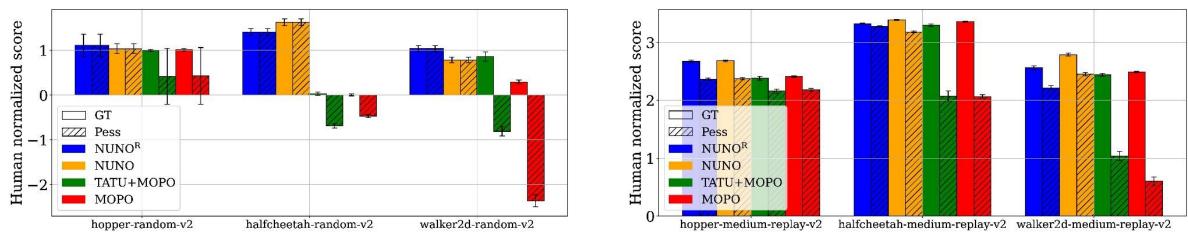

Can neural stochastic differential equations address model exploitation?

Empirical Results

<u>**TLDR 2:</u>** NUNO matches or surpasses their performance by up to 55% in high-quality ones.</u>

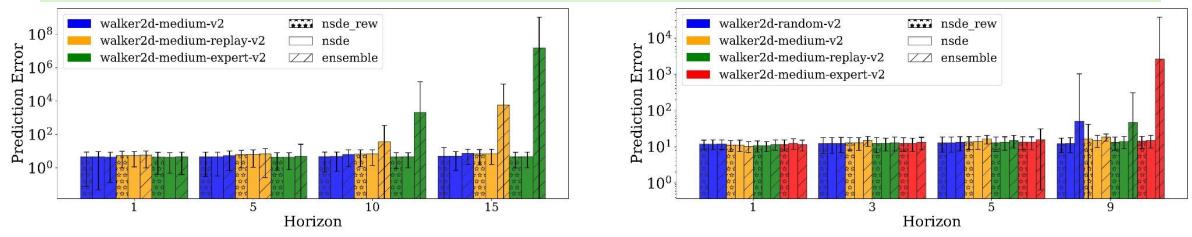
TLDR 1: NUNO outperforms SOTA in low-quality datasets by up to 93%.

Low quality datasets in D4RL: MOPO and TATU+MOPO penalize and truncate, rollouts based on uncertainty estimates from Gaussian ensembles, whereas NUNO achieves SOTA results in all environments via distance-aware uncertainty estimates of learned NSDEs.


Benchmark 1: D4RL

Task	NUNO (Ours)	$NUNO^{\mathbb{R}}$ (Ours)	MOBILE	MOPO ^T	МОРО	COMBO	MOREL	RAMBO	EDAC
hc-r hp-r wk-r	$52.7{\pm}3.4$ $73.2{\pm}9.8$ $27.7{\pm}0.9$	$52.2{\pm}0.5$ $53.7{\pm}13.9$ $28.1{\pm}1.2$	$39.3 \pm 3.0 \\ 31.9 \pm 0.6 \\ 17.9 \pm 6.6$	$33.3 \\ 31.9 \\ 10.4$	$35.9 \\ 16.7 \\ 4.2$	$38.8 \\ 17.9 \\ 7.0$	$38.9 \\ 38.1 \\ 16.0$	$39.5 \\ 25.4 \\ 0.0$	$28.4 \\ 25.3 \\ 16.6$
hc-m hp-m wk-m	68.8 ± 0.4 104.6 ± 0.2 85.4 ± 0.9	$\begin{array}{c} 64.7{\pm}0.5\\ 104.4{\pm}0.3\\ \textbf{92.6}{\pm}1.3\end{array}$	$74.6{\pm}1.2\\ \textbf{106.6{\pm}0.6}\\ 87.7{\pm}1.1$	$61.9 \\ 104.3 \\ 77.9$	$73.1 \\ 38.3 \\ 41.2$	54.2 97.2 81.9		77.9 87.0 84.9	$\begin{array}{c} 65.9 \\ 101.6 \\ 92.5 \end{array}$
hc-mr hp-mr wk-mr	$66.5{\pm}0.2$ 107.8 ${\pm}1.2$ 97.0 ${\pm}1.4$	$64.6 {\pm} 0.3$ 106.6 ${\pm} 1.9$ 101.1 ${\pm} 3.9$	71.7 ± 1.2 103.9 ± 1.0 89.9 ± 1.5	$67.2 \\ 104.4 \\ 75.3$	69.2 32.7 73.7	$55.1 \\ 89.5 \\ 56.0$	$44.5 \\ 81.8 \\ 40.8$		$61.3 \\ 101.0 \\ 87.1$
hc-me hp-me wk-me	97.0 ± 0.5 112.2 ± 0.3 113.2 ± 0.5	$95.8{\pm}1.2$ 111.9 ${\pm}0.5$ 112.6 ${\pm}0.6$	$\begin{array}{c} 108.2{\pm}2.5\\ 112.6{\pm}0.2\\ 115.2{\pm}0.7\end{array}$	74.1 107.0 107.9	$70.3 \\ 60.6 \\ 77.4$	90.0 111.1 103.3	$80.4 \\ 105.6 \\ 107.5$	$95.4 \\ 88.2 \\ 56.7$	106.3 110.7 114.7
Average	83.8	82.4	80.0	71.3	49.4	66.8	64.3	67.7	76.0

Benchmark 2: NeoRL


Task	NUNO (Ours)	NUNO ^R (Ours)	MOBILE	МОРО	BC	CQL	TD3+BC	EDAC
hc-L hp-L wk-L	52.5 ± 0.6 26.9 ± 3.8 52.5 ± 2.4	$58.4{\pm}0.5\\26.4{\pm}6.8\\49.4{\pm}1.9$	$54.7{\pm}3.0$ $17.4{\pm}3.9$ $37.6{\pm}2.0$	$40.1 \\ 6.2 \\ 11.6$	$29.1 \\ 15.1 \\ 28.5$	$38.2 \\ 16.0 \\ 44.7$	$30.0 \\ 15.8 \\ 43.0$	$31.3 \\ 18.3 \\ 40.2$
hc-M hp-M wk-M	$\begin{array}{c} 73.4{\pm}0.6\\ 103.3{\pm}2.2\\ 65.8{\pm}0.4\end{array}$	$\begin{array}{c} 78.8{\pm}0.8\\92.3{\pm}1.7\\49.4{\pm}16.9\end{array}$	77.8 ± 1.4 51.1 ± 13.3 62.2 ± 1.6	$62.3 \\ 1.0 \\ 39.9$	$49.0 \\ 51.3 \\ 48.7$	$54.6 \\ 64.5 \\ 57.3$	52.3 70.3 58.5	$54.9 \\ 44.9 \\ 57.6$
hc-H hp-H wk-H	$85.2{\pm}0.6$ $103.0{\pm}3.1$ $72.9{\pm}1.6$	$84.9{\pm}0.4$ $97.9{\pm}5.5$ $74.5{\pm}1.6$	$\begin{array}{c} 83.0{\pm}4.6\\ 87.8{\pm}26.0\\ \textbf{74.9{\pm}3.4} \end{array}$	$65.9 \\ 11.5 \\ 18.0$	$71.3 \\ 43.1 \\ 72.6$	$77.4 \\ 76.6 \\ 75.3$	$75.3 \\ 75.3 \\ 69.6$	81.4 52.5 75.5
Average	70.6	68	60.7	28.5	45.4	56.1	54.5	50.7

TLDR 3: NUNO constructs pessimistic learned MDPs that are less conservative.

Model exploitation: Evaluation in rollouts from learned dynamics models in (a) random and (b) medium-replay tasks. We report the average score per step with (pessimistic, Pess) and without (groundtruth, GT) uncertainty penalization.

TLDR 4: Neural SDEs are more accurate than Gaussian ensembles over longer horizons.

Model analysis: We illustrate the evolution of model prediction error in different datasets for D4RL Walker2d. (a) In-distribution: Evaluation of the datasets in which the models are trained. (b) Out-of-distribution: Evaluation of models, trained via random, in trajectories from other datasets.

Thank you!

Cevahir Koprulu Email: <u>cevahir.koprulu@utexas.edu</u> Website: <u>https://cevahir-koprulu.github.io/</u>

