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TLDR: Neural SDEs for offline model-based RL outperforms 
SOTA in continuous control benchmarks, particularly in low-

quality data regimes.
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Model Exploitation

A pitfall of offline MBRL:

• Estimated return exceeds the true return 𝜈 ෡ℳ 𝜋 − 𝜈ℳ 𝜋 > 0.

• Policy 𝜋 learns to exploit the regions of state-action space with high model uncertainty as 
well as high estimated return.

Popular remedies:

• Penalize policy with respect to model uncertainty [1]

• Truncate generated rollouts with high model uncertainty [2] 
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Can neural stochastic differential equations 
address model exploitation?
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Empirical Results

Low quality datasets in D4RL: MOPO and TATU+MOPO penalize and 

truncate, rollouts based on uncertainty estimates from Gaussian ensembles, 
whereas NUNO achieves SOTA results in all environments via distance-
aware uncertainty estimates of learned NSDEs.

Benchmark 2: NeoRL

Benchmark 1: D4RL
TLDR 1: NUNO outperforms SOTA in 

low-quality datasets by up to 93%.

TLDR 2: NUNO matches or surpasses their 
performance by up to 55% in high-quality ones.



Model exploitation: Evaluation in rollouts from learned dynamics models in (a) random and (b) medium-replay tasks. We report the average score per step with 

(pessimistic, Pess) and without (groundtruth, GT) uncertainty penalization.

Model analysis: We illustrate the evolution of model prediction error in different datasets for D4RL Walker2d. (a) In-distribution: Evaluation of the datasets in 

which the models are trained. (b) Out-of-distribution: Evaluation of models, trained via random, in trajectories from other datasets. 

TLDR 3: NUNO constructs pessimistic learned MDPs that are less conservative.

TLDR 4: Neural SDEs are more accurate than Gaussian ensembles over longer horizons. 
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